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ABSTRACT

An algebraic adaptive grid system based on equidistribution law and utilized by the Non-Uni-

form Rational B-Spline (NURBS) surface for re-distribution is presented. A weight function, utiliz-

ing a properly weighted boolean sum of various flow field characteristics is developed. Computa-

tional examples are presented to demonstrate the success of this technique.

INTRODUCTION

Grid adaptive schemes are divided into two basic categories: differential and algebraic. The dif-

ferential method is based on a variational approach where a function which contains a measure of

grid smoothness, orthogonality, and volume variation is minimized by using a variational principle.

This approach provides a solid mathematical basis for the adaptive method, but the Euler-La-

grange equations must be solved in addition to the original governing equations. On the other hand,

the algebraic method requires much less computational effort, but the grid may not be smooth. The

algebraic techniques are based on devising an algorithm where the grid movement is governing by

estimates of the local error in the numerical solution. This is achieved by requinng the points in the

large error regions to attract other points and points in the low error region to repel other points. One

of the disadvantages of algebraic method is that it generates the unsmooth grid. The utilization of

NURBS will generate the well-distributed smooth grid (Fig. 1).

An adaptive grid is a grid that controls the placement of grid points automatically based on the

solution of the physical problem under consideration and allows optimal grid redistribution as the

solution progresses. The accuracy of the numerical algorithm depends not only on the formal order

of approximation but also on the distribution of grid points in the computational domain. The adap-

tive grid is one of the methods that can make the numerical algorithm more accurate. The grid adap-

tive scheme, presented in this paper, is based on the equidistribution principle.
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Thedevelopmentof theadaptivealgorithmfor thestructuredflow simulationis accomplished
asatwostepprocess.Thefirst stepis todefineanadaptiveweightingmesh(distributionmesh)(Ref.
1-2)onthebasisof theequidistributionlawappliedtotheflow field solution.Thesecond,andprob-
ably themostcrucialstep,is to redistributegrid pointsin thecomputationaldomainaccordingto
theaforementionedweightingmesh.Adaptiveweighting(distributionmesh)providestheinforma-
tion on the desiredconcentrationof pointsto thegrid redistributionscheme.The evaluationof
weightingmeshisaccomplishedbyutilizingtheweightfunctionrepresentingthesolutionvariation
andtheequidistributionlaw (Ref.3). Theselectionof theweightfunctionplaysakeyrole in grid
adaptation(Ref.4-5). A newweightfunctionutilizingaproperlyweightedbooleansumof various
flowfield characteristicsisdefined.Theredistributionschemeisdevelopedby utilizing Non-Uni-
form RationalB-SplineSurface(NURBS)representation(Ref6). Theapplicationof NURBSrep-
resentationresultsin a well-distributed smoothgrid by maintaingthe fidelity of the geometry
associatedwithboundarycurves.Variouscomputationalexamplesarepresentedtodemonstratethe
successof thesemethods.

GRID ADAPTATION METHOD

The basis of the grid adaptation is the equidistribution law in one dimension (Ref. 8) applied to

the flow field. The equidistribution law is represented as

x_ w = const, mt (1)

With the weight function w taken as a function of_, this is just the Euler equation for the minimi-

zation of the integral

fo'I = .,(_)x_ (2)

Applying the spring analogy form to the above integral, the point location xi can be defined by

(Ref. 8)

i

x i = L" (i=2,3 ......,N-l) (3)
N

I1 d_

The integral in the denominator depends on the point distribution, amounting to a sum of 1/w

over the points. However A_ = 1 by construction regardless of the distribution. Therefore, the inte-

gral in (3) is evaluated iteratively. The integral in the numerator is then also re-evaluated for each

point, thus changing the point distribution again. This process must be continued until convergence
before the final new distribution is obtained.
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ALGORITHM

A self-explanatory, pictorial view of the algorithm of algebraic adaptive grid generation is

shown in Fig. 1.

The grid and solution will be transferred from the flow solver if the solution is good enough to

apply grid adaptation. The criterion of good solution can be the pressure L 2 residue or another prop-

erty of solution that can be used as the convergent indication.
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WEIGHT FUNCTION

The weight function is a very important part in the adaptive grid system. Here we introduce a

new weight function applicable to various flow field characteristics. The weight functions are com-

puted in both the _ and _1computational directions, and then coupled adaptation is applied. A linear
combination

N

1 + _ 2jwl, with _ 2_ = 1 (4)

where N - number of flow par_neter ( e.g. pressure, temperature, density, etc.)

kj - weighting factor associated with flow parameter kj > 0

wj -ajqj (D I_j kj = ajqj + 13jkj - (aj+l_j-1) qj kj

qj - scaled gradient of the flow variable j such that 0 _ qj _; 1

kj - scaled curvature values of the flow variable j such that 0 "_ kj _; 1

0 _ aj _g 1, 0 _ [$j _g 1, - weight factors assigned to gradients and curvatures is developed as
the weight function utilizing the Boolean sum of contributions from scaled gradients and curvatures.

The Boolean sum allows an appropriate weight to the gradients as well as the curvatures. For exam-

ple, in the case of thej _ flow parameter, the influence of weights can be presented as follows:

qj kj
1 0 1 13 1

1 0 a 13 a

0 1 a 1 1

1 1 1 1 1

I I a 1 I

I 1 I 13 I

I I a 13 1

0 0 a 13 0

Note that the value of the weight contribution is controlled by the weight factors and is at a maxi-

mum when gradients and/or curvature values are at a maximum. The gradients and curvatures

associated with the flow characteristics under consideration are smoothed using a four point diffu-

sion process.
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SCALING SCHEME FOR a & 13

Dwyer has developed a method to determine the percentage change in a dependent variable as

a priori. ( Ref. 9 ). This method is enhanced here to determine the suitable scaling a and [3 at each

grid point. (Ref. 3) The adaptation technique can be described in the generalized coordinates as

a qd_'+/_ _-(a+/_-l) qd_ kd_

= (5)

' ' Io'Io'
where x - normalized arc length, q - flow parameter gradient, k - flow parameter curvature, a &

13- weight factor assigned to gradients and curvatures, so that

At=
[ aq +13k - (a + fl - 1)qk ] Ax

(6)1 1 1 1

Then with R1 defined as

1

aI0 qdx

/_L = (7)
1 I 1 1

a[oqdX+ flJokdx-(a+fl-1)[oqdXlo kd_

we have the maximum percentage change in the solution over a grid interval,

qAx
r

1

[(1 - q)t_[jok,n + (1 - a)q k,_lm
A_

RI [0 L
a q_

A,_ 1

R l NR 1
(s)

since At -- 1/N and N+I is the number of points on the coordinate line. If we take an equality in

Eq. (8) with R1 from Eq. (7), we have

1
r - NR_

l 1 1 1 1 1

1

Na Io qdx

(9)

Ignoring the effect of the [3 term:
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Similarly with R2 defined as

l

R2 = 1 1 1 1

we can get

(11)

(12)

1 1 1

# = t , (13)

[O kdx ( l - R2 + R210 qdx )

With Boolean sum operation, we found that the choice of R1 = 1 and R2 = 1 still results in a very

good adaptive grid.

GENERATE REDISTRIBUTED ALGEBRAIC GRID

All of the adaptive grids displayed in this paper are generated by the Non-Uniform Rational B-

spline in surface (NURBS) or reparametrized uniform B-spline surface. The reparametlized uni-

form B-spline curve is applied to move the boundary points in order to keep the sharp corners

(Fig.3). In general, the degree m NURBS surface (3-D) is defined as the projection of a tensor prod-

uct B-spline in 4-D (Ref. 5-6):

K/ N/

y+y+B,,,,,(,,+,,_>,,+,,o+
r (_,r/) = ++0 i=0 (14)

KI A7

- y+y+B;,(,,+,,i)no
i=O i+0

where +Y_'are the mth order bivariate B-spline basis functions. Hij and Qij are the associated latice
of weights and control points. In the grid redistribution process, a matrix form of bi-cubic NURBS

was applied which can be formulated as (Ref. 7):

r (+,'1) = [! + _2 +.'1U_, IHQI IM)],Ir II q ,iz ,rqr (15)

_ I -- l, ' t] -- S -- S,
t,+ l - t, s,+j -s, (it))
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where control points and weights [ H Q ] are as follow:

[HQ] =

(HQ)i-LI-I (HQ)j-I. i (HQ)i-I.I+I (HQ)j-I.j+2

(HQ)ia- t (HQ)i.I (HQ)i,i+t (HQ),.I+2

(HQ),+I,i-I (HQ),+I 0 (HQ),+I,I+I (HQ),+I,i+2

(HQ),+2,1-1 (HQ)i+2.i (HQ),+2.i+I (HQ),+2./+2

The matrix M_t is defined as

417)

M_=!

I bii b12 b13 b14-

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44

08)

(l - t,+l) 2
b_ = (t,+t - t,_2) (t,+, - t___) ' b'2 = 1 - (b_, + bt._ )

bzi = - 3b. , b22 = - ( bzi + b2._ )

l)_j = 3l)ll , b_ 2 -- - ( b31 + b33 )

b41 = -- bll ) b42 = - ( b_t + b4_ + b44 )

(L-J - t,) z bl4 = 0
b13 -- (l,_, - t,+_) (l,__- t,+3 '

3(t,,, - t,) (t, - t___) ,
b_, = (t,_, - t,+O(t,_,- t,+,) t,2, = o

3(t,+) - ti)2 b, 4 = 0
b:., (/i-, - /,+2) (t,_, - t,+t)

(t,+t - t,):
b44 = (t, - t,+,) (t,- t,+_)

b 4 3
1 +

- (t,+, - t,)_ [(l, - l,+,) (t,_t[ t,+2)
I -i

(t, - t,+:) (t, - I,+,) + (t,+_- t,_,) (t,+: - t,)1

The redistributed algebraic grid is generated by utilizing distribution mesh as parameter space.

The convex hull, local support, and variation diminishing properties (Ref. 7) of B-spline functions

contribute to the generation of the well-distributed smooth grid. The application of inverse NURBS

formulation (Ref. 6) allows reevaluation of control points which influences the fidelity of surface

geometry during the redistribution process. The redistributed grid is evaluated for positive areas and

smoothness. If there is any negative area, the further more grid adaptation will not be executed.
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APPLICATIONS

The initial grads were generated by (GENIE-2D-3D) (Ref. i). The basic flow simulation codes

is the computer code PARC2D (Ref. 10) which are algorithmically based on the Beam-Warming
implicit finite difference scheme using approximate factorization. The routines for grid adaptation
are incorporated in the PARC2D system with proper data flow.

(1) Wedge Problem with a 5 Degree Incline Angle at the Leading Edge. Using the theory devel-
oped for supersonic flow, it is possible to compute the exact behavior of the shock waves generated
by single and double wedge in supersonic flow. In the wedge problem, the Mach number is 1.9, and
the Reynolds number is 1.0 x 1010 with a grid size at 80 x 60. There is one shock and one reflected

shock in the control volume. Without grid adaptation, the shock and the reflected shock are as thick

as two small tapes. Even withasignificant number of iterations (e.g. 10000 iterations)(Fig. 4). of the
flow solver, the solution shows very little improvement. After grid adaptation, the two shocks appear
thinner. Extremely thin shocks can be achieved by increasing grid adaptation numbers (Fig. 5). The
grid adaptation was performed at every 300 iterations. The redistributed grids and their influence

on the solution are presented in Figure 5. It can be seen that at every adaptation stage the pressure
contours have indicated a crisper shock. A closer look at the changing grad behavior near the shock
region is presented in Figure 6-7. In spite of extremely skewed grid lines, the code was able to
execute and provide a better solution.

(2) Double Wedge Case with Grid Size 103 x 27 and 2.0 Mach Number. As expected, the shocks
are thinner with grid adaptations, and the outlet near the mixture area of the second shock and the

third shock is more clear (Fig. 8).

(3) Cylinder Case with Grid Size 80 x 100, Mach Number 3.0,and Zero Angle of Attack. The
bow shock in front of the cylinder is captured better in the case of the adapted grid as shown in figure
9-10. Although the bow shock is a curve, the adaptive grid also bends along the shock wave.

It is generally well known that either rapidly varying the step size or the skew grid angle can
lead to poor accuracy when using finite difference approximations. Dwyer has shown by numerical

experiments that variable grids coupled with adaptive techniques are accurate. (Ref. 9) In this paper
we also observed in several cases that high skew angle grids coupled with adaptive techniques can

excellently resolve the shock (Fig. 5-10). We also acknowledge that if the orientation of the grid
line is aligned with the shock wave, the shock wave is captured exactly (Fig. 11). Thus, not only the
cluster of the grid points near the shock is necessary but also the alignment of the grid points with

the shock wave is important. We found that during the adaptation, the alignment of the grid points
with shock wave will be accomplished by forming the skewed grid lines, according to the flow solu-
tions. It is hoped that mathematical analysis could be developed to prove this observation, but the

present investigators have not proceeded in this pursuit. We hope it will be accomplished in the near
future.

(4) Airfoil NA CA 0012 with Grid Size is 180 x 160, Mach Number O.799, and the Angle of A ttack
1.25. The upper surface shock is thinner with the grid adaptation. The lower surface has no weak

shock if no grid adaptation is applied, but with grid adaptation, the weak shock was captured (Fig.
12). Comparing the Cp vs x/c charts, it is clear tharthe adaptive grid caught both shocks much better

than the initial grid did (Fig. 13), but the adaptive grid loses the grid concentration at the leading
edge and the tail. This is because the control field is so large that the effect of concentrating grid lines
near the high gradient and/or the high curvature is spread to the whole field. The strategies that can
improve this kind of condition are modifying the weight function by controlling the distribution near
the body surface or subdividing the whole field into several blocks with some smaller blocks near
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the surfaces of the airfoil and applying the local grid adaptation. The second strategy needs the devel-

opment of a multi-block adaptive grid system. Both strategies are currently under investigation.

CONCLUSION

With a new weight function formula, a new method that applies the NURBS surface in the alge-

braic adaptive grid generation system is introduced. The effect of this new adaptive grid system is

pretty good in capturing the shock wave for some smaller control field. The grid adaptation strategies

that are applied to catch the high gradient and/or high curvature area are used not only to cluster grid

points near those areas but also to move the grid points to align along the high solution derivative

areas. For complicated control fields, the multi-blocks adaptive grid system may be required. The

weight function that is suitable for laminar or turbulance flow simulation which need very small cells

near body surface, also needs to be investigated. The extension of this 2-D general adaptive grid

system to a three dimensional problem and its adaptation to a multiblock environment is currently

underway.
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